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Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey
{akleylek,kirlar}@metu.edu.tr,severomer@yahoo.com,zyuce@stm.com.tr

Abstract. The first short signature scheme is proposed by Boneh, Lynn,
and Shacham (BLS) in [8]. This scheme uses the properties of bilinear
pairings on certain elliptic curves. The main problem in BLS scheme is
the use of special hash function [3, 5, 8]. To deal with this problem, many
cryptographic schemes were proposed with cryptographic hash functions
such as MD5, SHA-1 [14]. In this paper, we propose a new and efficient
short signature scheme from the bilinear pairings. Our scheme is con-
structed by Bilinear Inverse-Square Diffie-Hellman Problem (BISDHP)
and does not require any special hash function. The exact security proofs
are also explained in the random oracle model. We give the implemen-
tation and comparison results of the BLS and ZSS (Zhang, Safavi, and
Susilo)[14] schemes. Furthermore, We use this signature scheme to con-
struct a ring signature scheme.
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1 Introduction

Digital signatures are the most important cryptographic primitive for the daily
life. Short signatures are needed in environments with space and bandwidth
constraints. Upto pairing-based cryptography, the best known shortest signature
was obtained by using the Digital Signature Algorithm (DSA) [1] over a finite
field Fq. The length of the signature is approximately 2logq. On the other hand,
when the pairing-based cryptographic protocol is used the length of the signature
is about ρlogq, where ρ = logq/logr and r is the largest prime divisor of the
number of the points in the elliptic curve. For example, if one uses RSA signature
1024 bit modulus, ECDSA signature is 320 bit long for the same security level.
However, short signature provides the same security level only for 160 bits for
the best choice.
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In 2001 Boneh, Lynn and Shacham [8] proposed the idea of short signature
scheme by using bilinear pairings. This scheme is based on Weil pairing and
needs a special hash function. Over the last years, there are various applications
of bilinear pairings in short signature schemes to construct new efficient schemes
[6], [7], [14]. The main improvement in short signature schemes is the use of cryp-
tographic hash function such as MD5 and SHA-1 instead of special hash function
called MapToPoint hash operation. It is known that short signature scheme with
cryptographic hash function is more efficient than others since MapToPoint hash
operation is still probabilistic.

In this note, we describe a new short signature scheme in a similar setting in
ZSS scheme [14]. Our system is based on Bilinear Inverse-Square Diffie-Hellman
Problem a combination of Bilinear Inverse Diffie-Hellman Problem (BIDHP) and
Bilinear Square Diffie-Hellman Problem (BSDHP). The main advantage of our
scheme is that it can be used with any cryptographic hash function such as
MD5, SHA-1. To give the exact security proofs, we define a new problem called
inverse square problem with k traitors (k−ISP). Then, the exact security proofs
of proposed scheme are also explained in the random oracle model. We give the
comparison of our scheme with the BLS scheme and ZSS scheme. According to
the comparison results, our scheme is more efficient than BLS scheme. Then, by
using this scheme, we construct a ring signature scheme.

This note is organized as follows: Some preliminaries about bilinear pairings
and some related problems to pairings are given in Section 2. Proposed short
signature scheme and its security analysis are explained in Section 3. A con-
struction of ring signature scheme is given in Section 4. We conclude in Section
5.

2 Pairing-Based Cryptography

In this section, we give some facts about bilinear pairings and define some new
problems. The proposed short signature scheme uses fascinating properties of
bilinear pairings like others.

2.1 Bilinear Pairings

Definition 1. Let G1 and G2 be additive cyclic groups of order n. Let G3 be a
multiplicative cyclic group of order n. A bilinear pairing is an efficiently com-
putable map e : G1 ×G2 −→ G3 which satisfies the following additional proper-
ties:

1. (bilinearity) For all P,R ∈ G1 and all Q,S ∈ G2, we have e(P + R,Q) =
e(P,Q)e(R,Q) and e(P,Q+ S) = e(P,Q)e(P, S).

2. (non-degeneracy) For all P ∈ G1, with P 6= IdG1 , there is some Q ∈ G2 such
that e(P,Q) 6= 1. For all Q ∈ G2, with Q 6= IdG2 , there is some P ∈ G1 such
that e(P,Q) 6= 1. When G1 = G2 and n is prime, e(P, P ) is a generator of
G3 for all P 6= IdG1
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The following lemma which is related to the properties of bilinear pairings can
be easily verified.

Lemma 1. Let e : G1 × G2 −→ G3 be a bilinear pairing. Let P ∈ G1 and
Q ∈ G2. Then

1. e(P, 0) = e(0, Q) = 1
2. e(−P,Q) = e(P,−Q) = e(P,Q)−1

3. e(kP,Q) = e(P, kQ) = e(P,Q)k for all k ∈ Z.
4. e(kP, lP ) = e(P, P )kl for all k, l ∈ Z.

2.2 Some Problems

We consider the following problems in the additive group (G,+) of order n.

– Discrete Logarithm Problem (DLP) : For P,Q ∈ G, find k ∈ Z∗n such
that Q = kP whenever such k exists.

– Decisional Diffie-Hellman Problem (DDHP) : For a, b, c ∈ Z∗n, given
P, aP, bP, cP decide whether c ≡ ab (mod n).

– Computational Diffie-Hellman Problem (CDHP) : For a, b ∈ Z∗n,
given P, aP, bP compute abP .

There are two variations of CDHP:

– Inverse Computational Diffie-Hellman Problem (ICDHP) : For a ∈
Z∗n, given P, aP , compute a−1P .

– Square Computational Diffie-Hellman Problem (SCDHP) : For a ∈
Z∗n, given P, aP , compute a2P .

The following theorem shows the relation of these problems that the proof can
be found in [13].

Theorem 1. CDHP, ICDHP and SCDHP are polynomial time equivalent.

The security of some applications of bilinear pairings in cryptography relies on
the difficulty of Bilinear Diffie-Hellman Problem (BDHP) which was first stated
in [5].

Definition 2. Let G be a finite additive cyclic group of order n with a generator
P , let e be a bilinear pairing on G, and let a, b, c be integers. The BDHP is to
compute the value of the bilinear pairing e(abcP, P ), whenever aP , bP and cP
are given.

The well known pairing-based protocols are three-party key exchange in one
round protocol proposed by Joux in [10], identity-based encryption scheme by
Boneh-Franklin in [5] and short signature scheme by Boneh-Lynn-Shacham in [8]
that the security of them depends on the BDHP. There are variants of BDHP:

– Bilinear Inverse Diffie-Hellman Problem (BIDHP) : For a, b ∈ Z∗n,
given P , aP , bP to compute e(P, P )a

−1b.
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– Bilinear Square Diffie-Hellman Problem (BSDHP) : For a, b ∈ Z∗n,
given P , aP , bP to compute e(P, P )a

2b.

It is not hard to obtain Bilinear Inverse-Square Diffie-Hellman Problem as a
combination of BIDHP and BSDHP:

– Bilinear Inverse-Square Diffie-Hellman Problem (BISDHP) : For
a, b ∈ Z∗n, given P , aP , bP to compute e(P, P )a

−2b.

Theorem 2. BDHP, BIDHP, BSDHP and BISDHP are polynomial time equiv-
alent.

Proof. BDHP ⇒ BIDHP is trivial.
BIDHP ⇒ BSDHP :
Given P, aP, bP , set the input of BIDHP as

Q = aP , Q1 = P = a−1Q, Q2 = bP = ba−1Q,

then BIDHP outputs

e(Q1, Q2) = e(Q,Q)(a
−1)−1ba−1

= e(aP, aP )b = e(P, P )a
2b

BSDHP ⇒ BISDHP :
Given P, a2P, bP , set the input of BSDHP as

Q = a2P , Q1 = a−2Q = P , Q2 = a−2bQ = bP ,

then BSDHP outputs

e(Q1, Q2) = e(Q,Q)(a
−2)2ba−2

= e(P, P )a
−2b

BISDHP ⇒ BDHP :
Given P, aP, bP, cP , set the input of BSDHP as the triples

(P, aP, cP ), (P, bP, cP ), (P, aP + bP, cP ),

then we have e(P, P )a
−2c, e(P, P )b

−2c and e(P, P )(a+b)
−2c, respectively. There-

fore, we obtain

e(P, P )abc = ( e(P,P )a−2c·e(P,P )b−2c

e(P,P )(a+b)−2c
)1/2.

ut

3 New Short Signature Scheme From Bilinear Pairings

In this section, we propose our signature scheme, and then explain its security.
We compare our scheme with BLS and ZSS schemes.
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3.1 Signature Scheme

A signature scheme consists of four steps : a parameter generation algorithm
ParamGen, a key generation algorithm KeyGen, a signature generation algorithm
Sign and a signature verification algorithm Verify.

We describe the new signature scheme as follows :
Let (G1,+) and (G2, ·) be cyclic groups of prime order n, P ∈ G1, G1 =<

P > and e : G1 ×G1 → G2 be a bilinear map. Let H(x) be cryptographic hash
function such as MD5, SHA-1. Suppose that A wants to send a signed message
to B.

– ParamGen : {G1, G2, e, n, P,H}
– KeyGen : Let H : Z∞2 → Zλ2 , where 160 ≤ λ ≤ log(n) be a cryptographic

hash function such as SHA1 or MD5. A randomly selects x ∈ Zn and com-
putes Ppub1 = x2P and Ppub2 = 2xP . In this structure, P , Ppub1 and Ppub2
are the public keys, x is the secret key.

– Sign : Given a secret key x and a message m, A computes the signature,
s = (H(m) + x)−2P .

– Verify : Given the public keys P , Ppub1 and Ppub2, a message m and a
signature s, B verifies the signature if

e(H(m)2P + Ppub1 + Ppub2H(m), s) = e(P, P ) holds.

Proof. By using Bilinear Inverse-Square Diffie-Hellman Problem,

e((H(m) + x)2P, (H(m) + x)−2P ) = e(P, P )(H(m)+x)2(H(m)+x)−2
= e(P, P ).

3.2 Signature Security

The well-known attacks against signature schemes are without message attack
and chosen-message attack. The strongest version of these attacks is an adaptive
chosen-message attack. In this scenario, the attacker can ask the signer to sign
any message that he/she chooses. He also knows the public key of the signer.
Then, he can customize his queries according to the previous message and chosen
signature pairs.

The strongest notion of security for signature schemes that is existentially un-
forgeable under adaptive chosen-message attack was defined by Goldwasser, Mi-
cali and Rivest [9]. Here, we use the definition of exact secure signature schemes
by Bellare and Rogaway [4] stated as follows:

Definition 3. A signature scheme S =< ParamGen, KeyGen, Sign, Verify > is
(t, qH , qS , ε)-existentially unforgeable under adaptive chosen-message attack if for
every probabilistic polynomial time forger algorithm F running in t processing
time, at most qH queries to the hash oracle and qS signatures queries, there does
not exist a non-negligible probability ε.

A signature scheme S is (t, qH , qS , ε)-secure if there is no forger who (t, qH , qS , ε)
breaks the scheme.
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We introduce a new problem that was called k-ISP (inverse square problem
with k traitors) to give the security proof of the new signature scheme. This
problem is similar to k-CAA (collusion attack algorithm with k traitors) that
was proposed by Mitsunari, Sakai and Kasahara in [11].

Definition 4 (k-ISP). For an integer k, and x ∈ Zn, P ∈ G1, given

{P, xP,H1, H2, · · · , Hk, (H1 + x)−2P, (H2 + x)−2P, · · · , (Hk + x)−2P},

compute (H + x)−2P for some H /∈ {H1, H2, · · · , Hk}.

k-ISP is (t, ε)-hard if for any t-time adversaries A, we have

Pr

[A(P, xP,H1, H2, · · · , Hk, (H1 + x)−2P, (H2 + x)−2P, · · · ,

(Hk + x)−2P )|x ∈ Zn, P ∈ G1, H1, H2, · · · , Hk ∈ Zn
)

= (H + x)−2P,H /∈ {H1, H2, · · · , Hk}

]
< ε (1)

where ε is negligible.
The following theorem shows that proposed signature scheme is secure against

the adaptive chosen-message attack.

Theorem 3. If there exists a (t, qH , qS , ε)-forger F using an adaptive chosen
message attack for the signature scheme proposed in Section 3.1, then there exists
a (t

′
, ε
′
)−algorithm A solving qS − ISP , where t

′
= t and ε

′ ≥ ( qS

qH
)qS · ε.

Proof. Assume that the output of the hash function is uniformly distributed and
the hash oracle will give a correct response for any hash query.

Suppose that a forger F (t, qH , qS , ε)-break the signature scheme using an
adaptive chosen message attack. One needs an algorithm A to solve qs−ISP . In
this structure, the challenge is to compute (H+x)−2P for someH /∈ {H1, H2, · · · , Hk}
for given P ∈ G1, Ppub1 = x2P , Ppub2 = 2xP , H1, H2, · · · , Hqs ∈ Zn and
(H1 + x)−2P, (H2 + x)−2P, · · · , (Hqs

+ x)−2P )
A is the signer and answers hash and signing queries by itself. Algorithm is

as follows:
Step 1: {H1, H2, · · · , HqH

} are the responses of the hash oracle queries for the
corresponding messages {m1,m2, · · · ,mqH

}.
Step 2: F makes a signature oracle query for each Hi for 1 ≤ i ≤ qH . If the hash
oracle answers truely, A returns (Hi + x)−2P to F as the response. Otherwise,
the process stops.
Step 3: F outputs a message-signature pair (m,S). The hash value of m is some
H and H /∈ {H1, H2, · · · , HqH

}. It satisfies:

e(x2P + 2xP +H2P, S) = e(P, P ) (2)

So, S = (H + x)−2P . A outputs (H,S) as a solution of challenge.
Since the operations are the same for A and F , the running time of A and

F is equal, t = t
′
. The success probability of A is qS

qH
is Step 2. A will not fail

with probability p ≥ ( qS

qH
)qS . Then, the success probability of the algorithm, A

for all steps is ε
′ ≥ ( qS

qH
)qS · ε. This completes the proof. ut
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Note that, one can obtain a good bound if qS and qH are very closed.
We now introduce a new problem proposed by Mitsunari et. al [11]. The

problem was called k-wCDHP (k-weak Computational Diffie-Hellman Prob-
lem).

Definition 5 (k-wCDHP). For an integer k, and x,H ∈ Zn, P ∈ G1, given
k + 1 values

{P, (H + x)P, (H + x)2P, · · · , (H + x)kP},

compute (H + x)−1P .

We define a new problem that is called k+1-IEP (k + 1 Inverse Exponent
Problem) to give a specific evaluation of the security of our proposed signature
scheme.

Definition 6 (k+1-IEP). For an integer k, and a ∈ Zn, P ∈ G1, given k + 1
values

{P, aP, a−2P, · · · , a−kP},

compute a−(k+1)P .

Theorem 4. k-wCDHP and k+1-IEP are polynomial time equivalent.

Proof. k-wCDHP ⇒ k+1-IEP :
Given k + 1 values P, (H + x)−1P, (H + x)−2P, · · · , (H + x)−kP , let Q =

(H + x)−kP , tQ = (H + x)−(k−1)P , and so t = (H + x).
Set the input of k-wCDHP to be

(H + x)−kP = Q, (H + x)−(k−1)P = tQ, (H + x)−(k−2)P = t2Q, · · · ,
(H + x)−1P = tk−1Q,P = tkQ.

Then, k-wCDHP outputs

t−1Q = (H + x)−1(H + x)−kP = (H + x)−(k+1).

k+1-IEP ⇒ k-wCDHP :
Given k+1 values P, (H+x)P, (H+x)2P, · · · , (H+x)kP , let Q = (H+x)kP ,

t−1Q = (H + x)(k−1)P , and so t = (H + x).
Set the input of k+1-IEP to be

(H + x)kP = Q, (H + x)(k−1)P = t−1Q, (H + x)(k−2)P = t−2Q, · · · ,
(H + x)P = t−(k−1)Q,P = t−kQ.

Then, k+1-IEP outputs

t−(k+1)Q = (H + x)−1P.

ut
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We note that k+1-IEP and k-wCDHP are no harder than the CDHP. There
is a special case that k+1-IEP or k-wCDHP can be easily solved :

Given

P0 = P, P1 = (H + x)−1P, P2 = (H + x)−2P, · · · , Pk = (H + x)−kP,

if Pi = Pj for i 6= j, this means that (H + x)−iP ≡ (H + x)−jP (mod q), so
the order of (H + x) in Zq is j − i. Then,

(H + x)−1P = Pj−i−1 or (H + x)k+1P = Pk+1 mod (j−i).

This case gives an attack on our proposed signature scheme. However, because
of considering (H +x) as a random element in Z∗q , we can show that the success
probability of this attack is negligible.

Let q be a prime. Then, for any a ∈ Z∗q , the order of a, ord(a), is a divisor
of q − 1. Given k > 1, assume that the number of element a ∈ Z∗q such that
ord(a) ≤ k is given by N . Since Zq is a field, N < k2 for k > 1. Let ρ be the
probability that a randomly chosen element in Z∗q has order less than k, then

ρ =
N

q
<
k2

q
.

This gives us an opportunity to give a bound on k, such as, if q ≈ 2256, we limit
k ≤ 264, which means that the attacker has at most 264 message-signature pairs.
Therefore, using the above attack, the success probability is

(264)2

2256
= 2−128 ≈ 0.29387× 10−38.

As a result, we have the following corollary.

Corollary 1. Assume that there is no polynomial time algorithm to solve the
problem k+1-IEP with non-negligible probability, then the proposed signature
scheme is secure under the random oracle model.

3.3 Efficiency

We compare our signature scheme with the BLS scheme and ZSS scheme from
the implementation point of view. PO, SM , PA, Squ, Inv, MTP and H denote
the pairing operation, scalar multiplication in G1, point addition in G1, squaring
in Zn, inversion in Zn, MapToPoint hash operation and hash operation in Zn,
respectively. Table 1 summarizes the result.

We implemented proposed signature scheme by using Pairing-Based Cryptog-
raphy (PBC) Library [2] and GMP library. Both libraries are installed as default
installation. We run Cygwin as Linux simulator for GMP. The performance of
signature schemas was measured on an Intel Core Duo 1,6 GHz with 2 GB RAM,
running Windows XP SP2. We have used standard functions of GMP/PBC and
compiled by GNU C Compiler. It should be noted that computation of pairing
is the most time-consuming part in short signature schemes. According to the
implementation result given in Table 2, our new scheme is more efficient than
BLS scheme since it requires less pairing operation.
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Table 1. Comparison of our scheme with the BLS scheme and ZSS scheme

BLS ZSS Proposed

Key Generation 1 SM 1 SM 2 SM

Signing 1 MTP , 1 SM 1 H, 1 Inv, 1 SM 1 H, 1 Squ, 1 Inv, 1 SM

Verification 1 MTP , 2 PO 1 H, 1 SM , 1 PO 1 H, 1 Squ, 1 SM , 2 PA, 1 PO

Table 2. Time comparison of our scheme with the BLS scheme and ZSS scheme

BLS ZSS Proposed

All time including

Key Generation, Signing 0.171000s 0.098000s 0.101000s

and Verification

4 A Ring Signature Scheme

Ring signature schemes were proposed in [12]. Main purpose of a ring signature
is to provide anonymity for the signer, by making it impossible to determine who
among the possible signers is the actual one. By this way, the signature provides
anonymity for the signer. Ring signature schemes satisfy signer ambiguity and
security against an adaptive chosen message attack. A ring signature scheme is
defined by:

– ring signing (m,P1, P2, · · · , Pr, xi) produces a ring signature σ for the mes-
sage m and a ring with r members, given the public keys P1, P2, · · · , Pr
together with secret key of the signer xi.

– ring verifying A signature pair (m,σ) includes the public keys of the all
the ring members i.e. possible signers.

The system parameters are {G1, G2, e, n, r, P,H} which are defined in Sec-
tion 3.1.

– Sign: Assume that the ith member of the ring sign the message. Let the
public keys of the ring members be Ppub1j and Ppub2j , the secret key of the
signer be xi. Then,

Si = (H(m) + xi)−2P + (H(m)
r−1∑

j=1,i6=j

2xjP +
r−1∑

j=1,i6=j

(x2
jP +H(m)2P ))

– Verify:
r∏
j=1

e((H(m) + xj)2P, Si) = e(P, P ).
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Proof.

r∏
j=1

e((H(m) + xj)2P, Si)

= e(
r∑
j=1

(H(m) + x2
j )P , Si)

= e(
r∑
j=1

(H(m) + x2
j )P , (H(m) + xi)−2P + (H(m)

r−1∑
j=1,i6=j

2xjP

+
r−1∑

j=1,i6=j

(x2
jP +H(m)2P ))

= e(P, P ).

The security of the proposed ring signature scheme is similar as given in
Section 3.2 since it is based on the signature scheme described in Section 3.1.

5 Conclusion

In this note, we propose a new short signature scheme not requiring any special
hash function. The security of this signature scheme depends on a new problem
called Bilinear Inverse-Square Diffie-Hellman Problem (BISDHP). It is shown
that this problem and BDHP are polynomial time equivalent. We also propose
a new complexity assumption called the k + 1 inverse exponent problem. The
exact security proofs are also explained in the random oracle model. We give
the implementation and comparison results of the BLS and ZSS schemes. Ac-
cording to the implementation results, our new scheme is more efficient than
BLS scheme since it requires less pairing operation. Then, we construct a ring
signature scheme based on proposed scheme.
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